Beans & Diabetes

Diabetes is becoming more common across the world as the overweight and obesity epidemic continues. Eating a variety of legumes, including beans, as part of a healthful diet may be valuable not only in the prevention but also management of diabetes.

Beans are rich in complex carbohydrates, dietary fiber, and protein, which gives them a low glycemic index.  This makes them an ideal food for the management of insulin resistance and diabetes. Beans also provide protein that is low in fat and saturated fat as well as important vitamins and minerals in the diet.  Numerous studies show that consuming a low glycemic index diet may be protective against developing diabetes, while consuming a high glycemic index/load may increase the risk. Beans are an important food for individuals striving to manage blood sugars.

In the Health Professionals Study and Nurses Health Study, a 37-40% increase in Type 2 diabetes was found in individuals with the highest glycemic intake compared to those having the lowest glycemic index intake. (Salmeron & Ascherio, 1997; Salmeron & Manson, 1997) In a cohort from the Nurses Health study II, an increased risk of diabetes was also found in young and middle aged women when comparing highest vs. lowest quintiles for glycemic index. (Schulze, 2004)

Krishnan et al (2007) examined differences in glycemic indices and risk of type-2 diabetes with a group of US black women. After 8 years of follow-up, they found a positive association for diabetes in women consuming higher glycemic index diets, which was surprisingly stronger in normal weight women with a BMI <25. In a study of older Australians, researchers reported an increased risk of type-2 diabetes in women < 70 years of age consuming higher glycemic index carbohydrates (Barclay, 2006). Lastly, in a cohort of middle-aged Chinese women, individuals in the highest quintile for glycemic index and glycemic load and with a BMI > 25 had an increased risk of type-2 diabetes.

Two epidemiologic studies have looked at the relationship between legume intake and risk of type-2 diabetes. A study of middle-aged Chinese women reported a 38% reduced risk in the incidence of type-2 diabetes for women in the highest quintile (65 g/day) of total legume intake (soybeans, peanuts, and other legumes) compared to those in the lowest quintile (12.3 g/day) (Villegas, 2008).

The ability of low glycemic index carbohydrates to decrease risk of type-2 diabetes may be related to lower post-prandial (post meal) release of glucose and insulin coupled to improvements in insulin sensitivity. (Willett, 2002) High glycemic index foods are known to cause rapid rises in blood glucose and insulin following a meal. Chronic consumption of high glycemic load diets may in turn lead to down-regulation or desensitization of receptors for insulin, eventually contributing to insulin resistance. (Augustin, 2002) The body initially adjusts to higher circulating glucose by increasing insulin secretion from the pancreas. However, in susceptible individuals over time, insulin resistance combined with exhaustion of insulin producing cells will eventually lead to Type 2 diabetes. (Augustin, 2002; Ludwig, 2002)

An important area of research in the field of diabetes is looking at the effect that certain foods have on blood sugars after a meal (postprandial). More than 30 published postprandial studies have compared dry beans or other pulse products to carbohydrate controls like potatoes, rice, white bread, pasta, grains, and glucose. The majority of these studies (~83%) found significant reductions in postprandial peak glucose or area under the curve (AUC) compared to the control.

A meta-analysis of randomized controlled longer term experimental trials found that when eaten on their own, pulses including cooked dry beans significantly lowered fasting blood glucose and insulin levels.  In studies where treatments were bean-containing high-fiber or low-glycemic diets, glycosylated hemoglobin (HbA1c) was significantly lowered. In fact, the reduction in HbA1c seen in people with Type 2 diabetes (~0.48%) was comparable to that achieved by oral medications. (Sievenpipe, 2009)

Dry bean consumption also has been shown to have beneficial effects on risk factors for diabetes (including reducing total cholesterol, LDL-cholesterol, triglycerides, and increasing HDL-cholesterol) and has been associated with decreased body weight (Anderson, 2002). Important dietary behaviors, including regular consumption of low glycemic index foods like beans, may be beneficial in the prevention and management of Type 2 diabetes.


Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Jama-Journal of the American Medical Association. 1997;277(6):472-477.

Schulze MB, Liu SM, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of Type 2 diabetes in younger and middle-aged women. American Journal Of Clinical Nutrition. 2004;80(2):348-356.

Krishnan S, Rosenberg L, Singer M, et al. Glycemie index, glycemie load, and cereal fiber intake and risk of Type 2 diabetes in US black women. Archives Of Internal Medicine. 2007;167(21):2304-2309.

Barclay AW, Brand-Miller JC, Mitchell P. Macronutrient intake, glycaemic index and glycaemic load of older Australian subjects with and without diabetes: baseline data from the Blue Mountains Eye Study. British Journal Of Nutrition. 2006;96(1):117-123.

Villegas R, Gao YT, Yang G, et al. Legume and soy food intake and the incidence of Type 2 diabetes in the Shanghai Women’s Health Study. American Journal Of Clinical Nutrition. 2008;87(1):162-167.

Willett W, Manson J, Liu SM. Glycemic index, glycemic load, and risk of Type 2 diabetes. American Journal of Clinical Nutrition. 2002;76(1):274S-280S.

Augustin LS, Franceschi S, Jenkins DJA, Kendall CWC, La Vecchia C. Glycemic index in chronic disease: a review. European Journal of Clinical Nutrition. 2002;56(11):1049-1071.

Ludwig DDS. The glycemic index – Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Jama-Journal of the American Medical Association. 2002;287(18):2414-2423.

Sievenpiper, J. L., Kendall, C. W., Esfahani, A., Wong, J. M., Carleton, A. J., Jiang, H. Y., Bazinet, R. P., Vidgen, E., & Jenkins, D. J. (2009). Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia, 52, 1479-1495.


Araya, H., Contreras, P., Alviña, M., Vera, G., & Pak, N. (2002). A comparison between an in vitro method to determine carbohydrate digestion rate and the glycemic response in young men. European Journal of Clinical Nutrition, 56, 735-739.

Araya, H., Pak, N., Vera, G., & Alviña, V. (2003). Digestion rate of legume carbohydrates and glycemic index of legume-based meals. International Journal of Food Sciences and Nutrition, 54, 119-126.

Bornet, F. R., Costagliola, D., Rizkalla, S. W., Blayo, A., Fontvieille, A. M., Haardt, M. J., Letanoux, M., Tchobroutsky, G., & Slama, G. (1987). Insulinemic and glycemic indexes of six starch-rich foods taken alone and in a mixed meal by Type 2 diabetics. The American Journal of Clinical Nutrition, 45, 588-595.

Brand, J. C., Snow, B. J., Nabhan, G. P., & Truswell, A. S. (1990). Plasma glucose and insulin responses to traditional pima indian meals. The American Journal of Clinical Nutrition, 51, 416-420.

Chan, H. M., Brand-Miller, J. C., Holt, S. H., Wilson, D., Rozman, M., & Petocz, P. (2001). The glycaemic index values of vietnamese foods. European Journal of Clinical Nutrition, 55, 1076-1083.

Dilawari, J. B., Kumar, V. K., Khurana, S., Bhatnagar, R., & Dash, R. J. (1987). Effect of legumes on blood sugar in diabetes mellitus. The Indian Journal of Medical Research, 85, 187-187.

Hall, R. S., Thomas, S. J., & Johnson, S. K. (2005). Australian sweet lupin flour addition reduces the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers. Asia Pacific Journal of Clinical Nutrition, 14(1), 91-97.

Jenkins, D. J., Wolever, T. M., Jenkins, A. L., Thorne, M. J., Lee, R., Kalmusky, J., Reichert, R., & Wong, G. S. (1983). The glycaemic index of foods tested in diabetic patients: a new basis for carbohydrate exchange favouring the use of legumes. Diabetologia, 24, 257-264.

Lock, D. R., Bar-Eyal, A., Voet, H., & Madar, Z. (1988). Glycemic indices of various foods given to pregnant diabetic subjects. Obstetrics and Gynecology, 71(2), 180-183.

Mani, U. V., Pradhan, S. N., Mehta, N. C., Thakur, D. M, Iyer, U., & Mani, I. (1992). Glycaemic index of conventional carbohydrate meals. The British Journal of Nutrition, 68(2), 445-450.

Mbanya, J. C., Mfopou, J. K., Sobngwi, E., Mbanya, D. N., Ngogang, J. Y., & Cameroon Study, Initials. (2003). Metabolic and hormonal effects of five common african diets eaten as mixed meals: the cameroon study. European Journal of Clinical Nutrition, 57, 580-585.

Noriega, E., Rivera, L., & Peralta, E. (2000). Glycaemic and insulinaemic indices of mexican foods high in complex carbohydrates. Diabetes, Nutrition & Metabolism, 13(1), 13-19.

Noriega, E., Peralta, E., Rivera, L., & Saucedo, S. (2001). Glycaemic and insulinaemic indices of mexican foods high in complex carbohydrates in Type 2 diabetic subjects. Diabetes, Nutrition & Metabolism, 14(1), 43-50.

Pathak, P., Srivastava, S., & Grover, S. (2000). Development of food products based on millets, legumes and fenugreek seeds and their suitability in the diabetic diet. International Journal of Food Sciences and Nutrition, 51, 409-414.

Vorster, H. H., van Tonder, E., Kotzé, J. P., & Walker, A. R. (1987). Effects of graded sucrose additions on taste preference, acceptability, glycemic index, and insulin response to butter beans. The American Journal of Clinical Nutrition, 45, 575-579.

Wolever, T. M., Cohen, Z., Thompson, L. U., Thorne, M. J., Jenkins, M. J., Prokipchuk, E. J., & Jenkins, D. J. (1986). Ileal loss of available carbohydrate in man: Comparison of a breath hydrogen method with direct measurement using a human ileostomy model. The American Journal of Gastroenterology, 81, 115-122.

Wolever, T. M., Jenkins, D. J., Thompson, L. U., Wong, G. S., & Josse, R. G. (1987). Effect of canning on the blood glucose response to beans in patients with Type 2 diabetes. Human Nutrition. Clinical Nutrition, 41, 135-140.

Wolever, T. M., Jenkins, D. J., Collier, G. R., Ehrlich, R. M., Josse, R. G., Wong, G. S., & Lee, R. (1988). The glycaemic index: Effect of age in insulin dependent diabetes mellitus. Diabetes Research, 7, 71-74.

Foster-Powell, K., Holt, SH., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition, 76, 5-56.

Akanji, A. O., Charles-Davies, M. A., Ezenwaka, C., Abbiyesuku, F. A., & Osotimehin, B. O. (1989). Dietary salt and the glycaemic response to meals of different fibre content. European Journal of Clinical Nutrition, 43, 699-703.

Bornet, F. R., Fontvieille, A. M., Rizkalla, S., Colonna, P., Blayo, A., Mercier, C., & Slama, G. (1989). Insulin and glycemic responses in healthy humans to native starches processed in different ways: correlation with in vitro alpha-amylase hydrolysis. The American Journal of Clinical Nutrition, 50, 315-323.

Bourdon, I., Olson, B., Backus, R., Richter, B. D., Davis, P. A., & Schneeman, B.O. (2001). Beans, as a source of dietary fiber, increase cholecystokinin and apolipoprotein b48 response to test meals in men. Journal of Nutrition, 131, 1485-1490.

Brand-Miller, J. C., Thomas, M., Swan, V., Ahmad, Z. I., Petocz, P., & Colagiuri, S. (2003). Physiological validation of the concept of glycemic load in lean young adults. Journal of Nutrition, 133, 2728-2732.

Calle-Pascual, A. L., Marenco, G., Asis, M. J., Bordiu, E., Romeo, S., Romero, C., Martin, P. J., Maranes, J. P., & Charro, A. L. (1986). Effects of different proportions of carbohydrates, polysaccharides/monosaccharides, and different fibers on the metabolic control in diabetic rats. Metabolism, 35, 919-923.

Collier, G., McLean, A., & O’Dea, K. (1984). Effect of co-ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia. 26, 50-54.

Collier, G. R., Wolever, T. M., Wong, G. S., & Josse, R. G. (1986). Prediction of glycemic response to mixed meals in noninsulin-dependent diabetic subjects. The American Journal of Clinical Nutrition, 44, 349-352.

Coulston, A. M., Hollenbeck, C. B., Liu, G. C., Williams, R. A., Starich, G. H., Mazzaferri, E. L., & Reaven,G. M. (1984). Effect of source of dietary carbohydrate on plasma glucose, insulin, and gastric inhibitory polypeptide responses to test meals in subjects with noninsulin-dependent diabetes mellitus. The American Journal of Clinical Nutrition, 40, 965-970.

Dilawari, J. B., Kamath, P. S., Batta, R. P., Mukewar, S., & Raghavan, S. (1981). Reduction of postprandial plasma glucose by Bengal gram dal (Cicer arietinum) and rajmah (Phaseolus vulgaris). The American Journal of Clinical Nutrition, 34, 2450-2453.

Golay, A., Coulston, A. M., Hollenbeck, C. B., Kaiser, L. L., Wursch, P., & Reaven, G. M. (1986). Comparison of metabolic effects of white beans processed into two different physical forms. Diabetes Care, 9, 260-266.

Gustafsson, K., Asp, N. G., Hagander, B., & Nyman, M. (1993). Effects of different vegetables in mixed meals on glucose homeostasis and satiety. European Journal of Clinical Nutrition, 47, 192-200.

Hamberg, O., Rumessen, J. J., & Gudmand-Hoyer, E. (1989). Blood glucose response to pea fiber: comparisons with sugar beet fiber and wheat bran. The American Journal of Clinical Nutrition, 50, 324-328.

Jarvi, A. E., Karlstrom, B. E., Granfeldt, Y. E., Bjorck, I. M., Vessby, B. O., & Asp, N. G. (1995). The influence of food structure on postprandial metabolism in patients with non-insulin-dependent diabetes mellitus. The American Journal of Clinical Nutrition, 61, 837-842.

Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H. M., & Fielden, H. (1980). Exceptionally low blood glucose response to dried beans: comparison with other carbohydrate foods. British Medical Journal, 281, 578-580.

Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H. M., Fielden, H., & Jenkins, A. L. (1980). Effect of guar crispbread with cereal products and leguminous seeds on blood glucose concentrations of diabetics. British Medical Journal, 281, 1248-1250.

Jenkins, D. J., Wolever, T. M., Taylor, R. H., Ghafari, H., Jenkins, A. L., Barker, H., & Jenkins, M. J. (1980). Rate of digestion of foods and postprandial glycaemia in normal and diabetic subjects. British Medical Journal, 281, 14-17.

Jenkins, D. J., Wolever, T. M., Taylor, R. H., Griffiths, C., Krzeminska, K., Lawrie, J. A., Bennett, C. M., Goff, D. V., Sarson, D. L., & Bloom, S. R. (1982). Slow release dietary carbohydrate improves second meal tolerance. The American Journal of Clinical Nutrition, 35, 1339-1346.

Jenkins, D. J., Thorne, M. J., Camelon, K., Jenkins, A., Rao, A. V., Taylor, R. H., Thompson, L. U., Kalmusky, J., Reichert, R., & Francis, T. (1982). Effect of processing on digestibility and the blood glucose response: a study of lentils. The American Journal of Clinical Nutrition, 36, 1093-1101.

Jenkins, D. J., Thorne, M. J., Taylor, R. H., Bloom, S. R., Sarson, D. L., Jenkins, A. L., & Blendis, L. M. (1984). Slowly digested carbohydrate food improves impaired carbohydrate tolerance in patients with cirrhosis. Clinical Science, 66(6), 649-657.

Jenkins, D. J., Thorne, M. J., Taylor, R. H., Bloom, S. R., Sarson, D. L., Jenkins, A. L., Anderson, G. H., & Blendis, L. M. (1987). Effect of modifying the rate of digestion of a food on the blood glucose, amino acid, and endocrine responses in patients with cirrhosis. The American Journal of Gastroenterology, 82, 223-230.

Johnson, S. K., Thomas, S. J., & Hall, R. S. (2005). Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. European Journal of Clinical Nutrition, 59, 169-176.

Kamath, P. S., Dilawari, J. B., Raghavan, S., Batta, R. P., Mukewar, S., & Dash, R. J. (1982). Plasma insulin response to legumes and carbohydrate foods. Indian Journal of Medical Research, 76, 583-590.

Krezowski, P. A., Nuttall, F. Q., Gannon, M. C., Billington, C. J., & Parker, S. (1987). Insulin and glucose responses to various starch-containing foods in type II diabetic subjects. Diabetes Care, 10, 205-212.

Mariotti, F., Pueyo, M. E., Tome, D., Berot, S., Benamouzig, R., & (2001). Mahe, S. The influence of the albumin fraction on the bioavailability and postprandial utilization of pea protein given selectively to humans. Journal of Nutrition, 131, 1706-1713.

O’Dea, K., & Wong, S. (1983). The rate of starch hydrolysis in vitro does not predict the metabolic responses to legumes in vivo. The American Journal of Clinical Nutrition, 38, 382-387.

Oli, J. M., Ikeakor, I. P., & Onwuameze, I. C. (1982). Blood glucose responses to common Nigerian foods. Tropical and Geographical Medicine, 34, 317-322.

Potter, J. G., Coffman, K. P., Reid, R. L., Krall, J. M., & Albrink, M. J. (1981). Effect of test meals of varying dietary fiber content on plasma insulin and glucose response. The American Journal of Clinical Nutrition, 34, 328-334.

Schafer, G., Schenk, U., Ritzel, U., Ramadori, G., & Leonhardt, U. (2003). Comparison of the effects of dried peas with those of potatoes in mixed meals on postprandial glucose and insulin concentrations in patients with Type 2 diabetes. The American Journal of Clinical Nutrition, 78, 99-103.

Schweizer, T. F., Andersson, H., Langkilde, A. M., Reimann, S. , & Torsdottir, I. (1990). Nutrients excreted in ileostomy effluents after consumption of mixed diets with beans or potatoes. II. Starch, dietary fibre and sugars. European Journal of Clinical Nutrition, 44, 567-575.

Seewi, G., Gnauck, G., Stute, R., & Chantelau, E. (1999). Effects on parameters of glucose homeostasis in healthy humans from ingestion of leguminous versus maize starches. European Journal of Nutrition, 38, 183-189.

Shaheen, S. M., & Fleming, S. E. (1987). High-fiber foods at breakfast: influence on plasma glucose and insulin responses to lunch. The American Journal of Clinical Nutrition, 46, 804-811.

Slyper, A., Schectman, G., Pleuss, J., & Anderson, A. (1991). Lack of effect of salt on the glucose and insulin response to mashed potatoes, white rice, and lima beans. Metabolism, 40, 747-750.

Sud, S., Siddhu, A., Bijlani, R. L., & Karmarkar, M. G. (1988). Nutrient composition is a poor determinant of the glycaemic response. The British Journal of Nutrition, 59(1), 5-12.

Tappy, L., Wursch, P., Randin, J. P., Felber, J. P., & Jequier, E. (1986). Metabolic effect of pre-cooked instant preparations of bean and potato in normal and in diabetic subjects. The American Journal of Clinical Nutrition, 43, 30-36.

Thomas, D. E., Brotherhood, J. R., & Miller, J. B. (1994). Plasma glucose levels after prolonged strenuous exercise correlate inversely with glycemic response to food consumed before exercise. International Journal of Sport Nutrition, 4, 361-373.

Thorburn, A. W., Brand, J. C., & Truswell, A. S. (1986). Salt and the glycaemic response. British Medical Journal (Clinical research edition), 292, 1697-1699.

Torsdottir, I., Alpsten, M., Andersson, D., Brummer, R. J., & Andersson, H. (1984). Effect of different starchy foods in composite meals on gastric emptying rate and glucose metabolism. I. Comparisons between potatoes, rice and white beans. Human Nutrition. Clinical Nutrition, 38, 329-338.

Torsdottir, I., Alpsten, M., & Andersson, H. (1986). Effect of different starchy foods in composite meals on gastric emptying rate and glucose metabolism. II. Comparisons between potatoes, rice and white beans in diabetic subjects. Human Nutrition. Clinical Nutrition, 40, 397-400.

Torsdottir, I., Alpsten, M., Andersson, H., Schweizer ,T. F., Tolli, J., & Wursch, P. (1989). Gastric emptying and glycemic response after ingestion of mashed bean or potato flakes in composite meals. The American Journal of Clinical Nutrition, 50, 1415-1419.

Traianedes, K., & O’Dea, K. (19866). Commercial canning increases the digestibility of beans in vitro and postprandial metabolic responses to them in vivo. The American Journal of Clinical Nutrition, 44, 390-397.

Anderson, J. W., & Major, A. W. (2002). Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. The British Journal of Nutrition, 88, S263-S271.

American Diabetes Association.  Retrieved from

Mitchell, D. C., Lawrence, F. R., Hartman, T. J., & Curran, J. M. (2009). Consumption of dry beans, peas, and lentils could improve diet quality in the US population. Journal of the American Dietetic Association, 109, 909-913.